
 

 

 

268 SỐ ĐẶC BIỆT (10-2021) 

TẠP CHÍ                    ISSN: 1859-316X 

KHOA HỌC CÔNG NGHỆ HÀNG HẢI 
JOURNAL OF MARINE SCIENCE AND TECHNOLOGY HỘI NGHỊ KH&CN CƠ KHÍ - ĐỘNG LỰC 2021 

LARGE DEFLECTION OF FG-CNTRC SANDWICH BEAMS PARTIALLY 

RESTING ON A TWO-PARAMETER ELASTIC FOUNDATION 

CHUYỂN VỊ LỚN CỦA DẦM SANDWICH FG-CNTRC  

NẰM MỘT PHẦN TRÊN NỀN ĐÀN HỒI HAI THAM SỐ 

BUI THI THU HOAI1,2*, TRAN THI THU HUONG1, NGUYEN DINH KIEN2  
1Faculty of Vehicle and Energy Engineering, Phenikaa University, Yen Nghia, Ha Dong, 

Hanoi, Vietnam  
2Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Hanoi, 

Vietnam  

*Email: hoai.buithithu@phenikaa-uni.edu.vn 

 

Abstract 

Large deflections of FG-CNTRC sandwich beams 

partially supported by a two-parameter elastic 

foundation are studied in this paper by a 

nonlinear finite element procedure. The core of 

the beams is homogeneous while the top and 

bottom are of CNTRC material. The effective 

properties of the two CNTRC face sheets are 

determined by an extended rule of mixture. CNTs 

are reinforced into matrix phase through uniform 

distribution (UD) or four different types of 

functionally graded (FG) distribution named as 

FG-X, FG- FG-V, FG-O. Based on a total 

Lagrange formulation, a first-order shear 

deformable nonlinear beam element is formulated 

and employed in the study. Newton-Raphson 

iterative method is used in combination with arc-

length control technique to obtain the large 

deflection curves of the beams. The effects of CNT 

volume fraction, type of CNT distributions, layer 

thickness ratio and the foundation parameter on 

the large deflection behavior of the sandwich 

beams are examined and discussed. 

Keywords: FG-CNTRC sandwich beam, elastic 

foundation, total Lagrange formulation, large 

deflection analysis. 

Tóm tắt 

Bài báo nghiên cứu chuyển vị lớn của dầm 

sandwich làm từ vật liệu composite được gia 

cường bởi các ống nano carbon (functionally 

graded carbon nanotube-reinforced composite, 

FG-CNTRC) nằm một phần trên nền đàn hồi bằng 

cách sử dụng phương pháp phần tử hữu hạn. Dầm 

được tạo bởi ba lớp vật liệu, trong đó lớp lõi được 

làm từ vật liệu thuần nhất và hai lớp ngoài được 

làm từ vật liệu FG-CNTRC. Tính chất vật liệu của 

hai lớp CNTRC được xác định bởi quy luật phối 

trộn mở rộng. Các kiểu phân bố khác nhau của 

CNTs được sử dụng trong nghiên cứu này bao gồm 

phân bố đều (UD) và bốn kiểu phân bố theo quy 

tắc hàm (FG) đó là FG-X, FG- FG-V, FG-O. Dựa 

trên phương pháp Lagrange toàn phần, lý thuyết 

phần tử dầm phi tuyến biến dạng trượt bậc nhất 

được thiết lập và sử dụng. Phương pháp lặp 

Newton-Raphson được sử dụng kết hợp với kĩ 

thuật kiểm soát độ dài cung để thu được đường 

cong chuyển vị lớn của dầm. Ảnh hưởng của tỉ 

phần thể tích CNT, kiểu phân bố CNT, tỉ số chiều 

dày của các lớp và tham số nền đàn hồi đối với 

ứng xử chuyển vị lớn của dầm được minh họa và 

thảo luận chi tiết trong nghiên cứu này. 

Từ khóa: Dầm sandwich FG-CNTRC, nền đàn 

hồi, phương pháp Lagrange toàn phần, phân tích 

chuyển vị lớn. 

1. Introduction 

Functionally graded (FG) sandwich structures 

with outstanding properties in the high strength-to-

weight ratio are extensively used in different 

engineering applications, such as automotive, 

aerospace and defense. With the increment of using 

high performance material in practice, such as FG-

CNTRC material [1,2], the structures can undergo 

large deformation before failure, and this 

phenomenon accelerates the importance of nonlinear 

analysis in the field of structural mechanics. Nguyen 

and Tran [3] presented a large displacement analysis 

of FGM sandwich beams and frames using a co-

rotational Euler-Bernoulli beam element. Hoai et al. 

[4] studied the large displacements of FG functionally 

graded sandwich beams in thermal environment using 

a finite element formulation. 

The present paper studies large deflections of the 

FG-CNTRC sandwich beams partially resting on a 
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two-parameter elastic foundation by using a nonlinear 

finite element procedure. The core of the beams is 

homogeneous while the two face sheets are made 

from CNTRC material. CNTs are reinforced into 

matrix phase through five type distributions namely 

UD, FG-X, FG- , FG-V, FG-O. Based on the total 

Lagrange formulation, a nonlinear element is derived 

and used to compute the deflections of the beams. The 

effects of the CNT volume fraction, type of CNT 

distribution, layer thickness ratio and aspect ratio on 

the large deflection response of the sandwich beams 

are examined and discussed. 

2. FG-CNTRC sandwich beam 

Figure 1 shows the sandwich beam partially 

supported by two-parameter elastic foundation. The 

beam consists of three layers, a homogeneous core 

and two FG-CNTRC face sheets. Denoting 

0 1 2 3, , , ,
2 2

h h
h h h h   respectively, are the 

coordinates along the z-axis of layers. Five types of 

distribution of CNTs in the beam cross-section (UD, 

FG-X, FG- , FG-V, FG-O), are investigated in this 

present work. 

The material properties of CNTRC layers are 

determined according to an extended rule of mixture 

as [1]: 
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in which, 11 22,CNT CNTE E and 12

CNTG are, respectively, 

Young’s moduli and shear modulus of the CNT; 

,m mE G and  1m CNTV V   are Young’s modulus, 

shear modulus and volume fraction of matrix phase, 

respectively; 
1 2 3, ,    are the CNT efficiency 

parameters. The Poisson’s ratios of the FG-CNTRC 

face sheets are determined as: 
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where 
12 ,CNT m   are Poisson’s ratios of the CNT 

and matrix, respectively. The effective elastic and 

shear moduli of the kth layer are calculated as [1]: 
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with ,c cE G are the elastic and shear moduli of 

the core material. The effective mass density of the kth 

layer is defined as 
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with 
c is mass density of core material. 

3. Finite element formulation 

Taking into account the variation of the material 

properties in the beam thickness, a two-node shear 

deformable beam element based on the Antman’s 

nonlinear beam model [5] using the total Lagrange 

formulation is considered herewith 

  1 1 1 2 2 2

T

u w u w d           (5) 

where  , , , 1, 2i i iu w i   are the axial, 

transverse displacements and rotation at node i, 

respectively.  

The beam element with length l is initially straight 

and lies on the x-axis as depicted in a Cartesian 

coordinate system (x,z) in Figure 2. A point P with 

abscissa x and its associated cross section S in the 

initial configuration become point P′ and section S′ in 

the deformed configuration. The deformation of the 

point P can be defined through an angle θ(x) - the 

rotation of the cross section S, and the current position 

vector  ,x xr  of the point P′, as [6]: 

  
 

   , 1 21x

d x
x x x

dx
      

r
r e e      (6) 

Where: 

 
1 2cos sin , sin cos       e i j e i j    (7) 

are, respectively, the unit vectors, orthogonal and 

parallel to the current section S′. The curvature of the 

 

Figure1. Schematic view of an FG-CNTRC sandwich 

beam 
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beam  x  at the point P’ is given by: 

 
 d x

x
dx


                   (8) 

From Eqs. (6)-(8), one can write the axial and 

shear strains in the forms: 

  

 

 

1 cos sin 1,

cos 1 sin

du dw
x

dx dx

dw du
x
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    (9) 

Noting that the strains    ,  x x  and the 

curvature  x although parameterized for 

convenience by the reference abscissa  0,  x l take 

the values on the current deformed configuration. 

The strain energy for the beam element is given 

by: 
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Where: 5/ 6   is a shear correction factor; 

11 12 22,  ,  A A A  and 
33A  are rigidities, defined as: 

    

    

 

1

1

3
( ) 2

11 12 22

1

3
( )

33

1

, , 1, , ;
k

k

k

k

h

k

k h

h

k

k h

A A A b E z z z dz

A b G z dz













 

 
(11) 

The strain energy stored in the two-parameter 

elastic foundation resulting from the deformation of a 

beam element is given by: 
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where 
Wk and

Gk are the stiffness of the Winkler 

foundation and the shear layer, respectively. 

The displacements and rotation inside the element 

can be linearly interpolated from the nodal values 

according to: 
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The above linear interpolation, however leads to 

an element with the shear-locking problem [4]. In 

order to deal with this problem, one-point Gauss 

quadrature is employed herewith to evaluate the strain 

energy of the element. In this regard, the strain energy 

of the beam element in the following form: 

     
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The internal nodal force vector 
inf  and the 

tangent stiffness matrix
tk are computed by once and 

twice differentiating the strain energy with respect to 

the nodal displacement, respectively: 

   
i n i n i n i n i n i n i n

a c b s W GU
      


f f f f f f f
d

  (16)

2
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k k k k k k k
d

   (17) 

where the superscrips , , , , anda c b s W G , 

respectively, indicate the terms contributed by the 

axial stretching, axial-bending coupling, bending, 

shear deformation of the beam, stretch of the Winkler 

foundation, and the rotation of the shear layer. 

 

Figure 2. Configurations and kinematics of a two-

node beam element 
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4. Equilibrium equation 

The equilibrium equation for large deflection 

analysis of the beam can be written in the form [4]: 

    in, ex   g p q p f 0  (18) 

where the residual force vector g  is a function of 

the current structural nodal displacements p , and the 

load level parameter 
in; q  is the structural nodal 

force vector, assembled from the formulated vector 

in ex;f f  is the fixed external loading vector. 

Eq. (18) can be solved by an incremental/iterative 

procedure. A convergence criterion based on 

Euclidean norm of the residual force vector is used for 

the iterative procedure as: 

 ex g f‖ ‖ ‖ ‖  (19) 

where   is the tolerance, chosen by 410  for 

all numerical examples considered in Section 5. 

In order to handle the special cases where the 

tangent stiffness matrix ceases to be positive define, 

Newton-Raphson based iterative method is used 

herein in combination with spherical arc-length 

control technique in solving Eq. (18). 

5. Numerical results 

In this section, the following dimensionless 

parameters are introduced for the external loads and 

displacements: 

 

* * *

2
, ,s L L

E I u w
P u w

L L L
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 (20) 

where I is the inertia moment of the cross section; 

,  L Lu w  are the tip axial and vertical displacements, 

respectively. 

As mentioned in the Introduction section, there are 

no available literatures related to large displacement 

analysis of FG-CNTRC sandwich beam, a 

homogenous beam subjected to a tip load P is 

analyzed herein to verify the formulation. The 

normalized tip displacements of the beam obtained 

herein compared to the available solution of 

Mattiasson [8] and Nanakorn and Vu [9] are given in 

Table 1. The good agreement between the 

displacements of the present work with that of Ref. [8] 

and Ref. [9] is seen from Table 1, regardless of the 

applied load. 

 

Table 1. Comparison of tip response of homogenous beam under a tip load 

*P   

  

*u     *w   

Ref. [8] Ref. [9] Present   Ref. [8] Ref. [9] Present 

3 0.25442 0.24757 0.25458  0.60325 0.59534 0.60434 

5 0.38763 0.37733 0.38783  0.71379 0.70479 0.71541 

7 0.47293 0.46103 0.47317  0.76737 0.75831 0.76950 

9 0.53182 0.51909 0.53209  0.79906 0.79011 0.80169 

Table 2. Tip response of FG-CNTRC sandwich beam under a tip load * 15, / 20, 0.4P L h       

 1 2,  k k   Type 

/ 4c fh h      / 6c fh h      / 8c fh h    

*

CNTV    
*

CNTV   
*

CNTV  

0.12 0.17 0.28   0.12 0.17 0.28   0.12 0.17 0.28 

(50,0.5) 

UD 0.9100 0.8967 0.8745  0.9085 0.8976 0.8789  0.9076 0.8983 0.8822 

FG-X 0.9098 0.8964 0.8742  0.9084 0.8975 0.8787  0.9075 0.8983 0.8821 

FG-O 0.9102 0.8969 0.8969  0.9086 0.8977 0.8790  0.9076 0.8984 0.8823 

FG-V 0.9063 0.8920 0.8681  0.9063 0.8947 0.8749  0.9061 0.8964 0.8795 

FG-   0.8795 0.9016 0.8812  0.9107 0.9005 0.8829  0.909 0.9003 0.8849 

(100,2.5) 

UD 0.8765 0.8636 0.8426  0.8751 0.8646 0.8468  0.8743 0.8654 0.8500 

FG-X 0.8763 0.8634 0.8423  0.8751 0.8645 0.8467  0.8742 0.8653 0.8499 

FG-O 0.8767 0.8639 0.8429  0.8752 0.8647 0.8469  0.8743 0.8654 0.8501 

FG-V 0.8729 0.8591 0.8365  0.8730 0.8619 0.8430  0.8729 0.8635 0.8474 

FG-    0.8803 0.8684 0.8489   0.8773 0.8674 0.8507   0.8757 0.8672 0.8526 
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Table 2 presents tip response of FG-CNTRC 

sandwich beam under a tip load * 15P   for five 

types of CNT distribution. The non-dimensional 

parameters    1 2, 50,0.5k k  and    1 2, 100,2.5k k   

are computed respectively in this table. As can be seen 

that the tip response of the beam decreases with 

increasing of the total CNTs volume fraction 
*

CNTV . 

Among the five type of CNT distribution, the FG-V 

leads to the smallest result, opposite to the FG-  , 

which gives the highest tip response, while the results 

obtained from three types UD, FG-X, FG-O are very 

close together. Table 2 also shows the effect of the ratio 

/c fh h  on the tip response of the beam. The increase 

of the ratio /c fh h  leads to the decrease in tip 

response of the beam. These results are resulted from 

the increase in the stiffness of the sandwich beam. 

Figure 3 plots the load-displacement curves of FG-

CNTRC sandwich beam under the tip load for 

difference values of foundation parameter . At the 

given value of normalizied load, the tip displacements 

increase with the increasing of . 

 

6. Conclusions 

The paper has investigated the large deflections of 

FG-CNTRC sandwich beam partially resting on two-

parameter elastic foundation with five different types 

of CNT distribution for the first time. The obtained 

numerical results show that the CNT volume fraction, 

the type of CNT distributions and the foundation 

support play a vital role in the large deflection 

behavior of the sandwich beams. The formulation 

derived in the present work can be extended to count 

for the influence of other factors such as the 

temperature and porosities as well. 
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