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Abstract

Large deflections of FG-CNTRC sandwich beams
partially supported by a two-parameter elastic
foundation are studied in this paper by a
nonlinear finite element procedure. The core of
the beams is homogeneous while the top and
bottom are of CNTRC material. The effective
properties of the two CNTRC face sheets are
determined by an extended rule of mixture. CNTs
are reinforced into matrix phase through uniform
distribution (UD) or four different types of
functionally graded (FG) distribution named as
FG-X, FG- FG-V, FG-O. Based on a total
Lagrange formulation, a first-order shear
deformable nonlinear beam element is formulated
and employed in the study. Newton-Raphson
iterative method is used in combination with arc-
length control technique to obtain the large
deflection curves of the beams. The effects of CNT
volume fraction, type of CNT distributions, layer
thickness ratio and the foundation parameter on
the large deflection behavior of the sandwich
beams are examined and discussed.

Keywords: FG-CNTRC sandwich beam, elastic
foundation, total Lagrange formulation, large
deflection analysis.

Tom tit

Bai b&o nghién ciu chuyén vi lon cuia dam
sandwich lam ter vdt liéu composite dwoc gia
cuong béi cac ong nano carbon (functionally
graded carbon nanotube-reinforced composite,
FG-CNTRC) nam mét phan trén nén dan hoi bang
cach sir dung phirong phdp phan tir hitu hgn. Dam
duoc tao bai ba lop vat liéu, trong dé lop 161 duwoc
lam tzr vat liéu thuan nhdt va hai lép ngoai duoc
1am tir vt ligu FG-CNTRC. Tinh chadt vt lidu cua

hai l6p CNTRC dwgc xdc dinh bai quy lugt phoi
tron mo réng. Céc kiéu phan bs khac nhau cua
CNT5 duroc s dung trong nghién cizu nay bao gom
phan bé déu (UD) va bon kiéu phan bo theo quy
tde ham (FG) d6 la FG-X, FG- FG-V, FG-O. Dya
trén phwong phdp Lagrange toan phan, Iy thuyét
phan tiz dam phi tuyén bién dang trwot bac nhdt
duwoc thiét lgp va s dung. Phuong phdp 1dp
Newton-Raphson dwroc sir dung két hop véi ki
thudt kiém sodt d¢ dai cung dé thu dwoce dwong
cong chuyén vi lén cua dam. Anh hweng cua ti
phan thé tich CNT, kiéu phan bé CNT, t/ s¢ chiéu
day cua cac 16p va tham sé nén dan hoi doi Véi
#ng xir chuyeén vi lén cia dam dwoc minh hoa va
thao lugn chi tiét trong nghién cizu nay.

Tir khéa: Dam sandwich FG-CNTRC, nén dan
hoi, phirong phap Lagrange toan phan, phan tich
chuyén vj lon.

1. Introduction

Functionally graded (FG) sandwich structures
with outstanding properties in the high strength-to-
weight ratio are extensively used in different
engineering applications, such as automotive,
aerospace and defense. With the increment of using
high performance material in practice, such as FG-
CNTRC material [1,2], the structures can undergo
large deformation before failure, and this
phenomenon accelerates the importance of nonlinear
analysis in the field of structural mechanics. Nguyen
and Tran [3] presented a large displacement analysis
of FGM sandwich beams and frames using a co-
rotational Euler-Bernoulli beam element. Hoai et al.
[4] studied the large displacements of FG functionally
graded sandwich beams in thermal environment using
a finite element formulation.

The present paper studies large deflections of the
FG-CNTRC sandwich beams partially resting on a
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two-parameter elastic foundation by using a nonlinear
finite element procedure. The core of the beams is
homogeneous while the two face sheets are made
from CNTRC material. CNTs are reinforced into
matrix phase through five type distributions namely
UD, FG-X, FG- A, FG-V, FG-0O. Based on the total
Lagrange formulation, a nonlinear element is derived
and used to compute the deflections of the beams. The
effects of the CNT volume fraction, type of CNT
distribution, layer thickness ratio and aspect ratio on
the large deflection response of the sandwich beams
are examined and discussed.

2. FG-CNTRC sandwich beam

Figure 1 shows the sandwich beam partially
supported by two-parameter elastic foundation. The
beam consists of three layers, a homogeneous core
and two FG-CNTRC face sheets. Denoting

h, :_g, h, h,, h, :2, respectively, are the

coordinates along the z-axis of layers. Five types of
distribution of CNTs in the beam cross-section (UD,
FG-X, FG- A, FG-V, FG-0), are investigated in this
present work.

hy=h72

FG - CNTRC

————— Homogenous core —————omceeed——

FG - C(NTRC

By=-h72

Figurel. Schematic view of an FG-CNTRC sandwich
beam

The material properties of CNTRC layers are
determined according to an extended rule of mixture
as [1]:

E, = 771VCNT ElclNT +V, E"™;
2 Vor Vo 1 Vor Vo O
E22 E;:ZNT Em’ Glz Gl(;NT Gm

inwhich, ESV", Eg"and GJ" are, respectively,
Young’s moduli and shear modulus of the CNT,;
E",G"and V, =1-V,

9
nt are Young’s modulus,

shear modulus and volume fraction of matrix phase,
respectively; n,,7,,7, are the CNT efficiency

parameters. The Poisson’s ratios of the FG-CNTRC

HOI NGHI KH&CN CO KHi - PONG LIPC 2021

face sheets are determined as:

_ CNT m. _ Vi .
Vip =VonrViy Vv vy = E_ E.. (2
11
where vE'T, v™ are Poisson’s ratios of the CNT

12

and matrix, respectively. The effective elastic and
shear moduli of the kth layer are calculated as [1]:

E11 (k)
—2 G (z)=G,, (k=173);
1_V12V21 ( ) 12( ) (3)

E® =E° G?®=G°

E®(2)=

with E°, G®are the elastic and shear moduli of
the core material. The effective mass density of the kth
layer is defined as

p(k) (Z) =VCN-|— pCNT +Vmpm (k — 1’ 3)'

C (4)
P =p

with p° is mass density of core material.
3. Finite element formulation

Taking into account the variation of the material
properties in the beam thickness, a two-node shear
deformable beam element based on the Antman’s
nonlinear beam model [5] using the total Lagrange
formulation is considered herewith

d={ul w, 6 u, w, HZ}T (5)

where u, w, 6, (i=12) are the axial,
transverse displacements and rotation at node |,
respectively.

The beam element with length | is initially straight
and lies on the x-axis as depicted in a Cartesian
coordinate system (x,z) in Figure 2. A point P with
abscissa x and its associated cross section S in the
initial configuration become point P’ and section S’ in
the deformed configuration. The deformation of the
point P can be defined through an angle 6¢x) - the
rotation of the cross section S, and the current position
vector r,(x) of the point P', as [6]:

rlx(x):drd—(xx):[1+g(x)]e1+;/(x)e2 (6)

Where:
e, =cosdi+sindj, e, =—sinfi+cosdj (7)

are, respectively, the unit vectors, orthogonal and
parallel to the current section S'". The curvature of the
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beam «(x) at the point P’ is given by:

k(x)= 8)

(3

deformed configuration

I'x
€ o \

~C1
P

SThg T8 W

Z A

1'(x) w(Xx)

1 |P 2

Y

N
initial configuration X
X u(x)
1

Figure 2. Configurations and kinematics of a two-
node beam element

From Egs. (6)-(8), one can write the axial and
shear strains in the forms:

e(x)= (1+d—ujcosa+d—sm€ -1,
dx d

dw du ®)
X)=—c0s0—|1+— |sin@
7()="5x ( dxj

Noting that the strains &(x), 7(x) and the
curvature x(x) although  parameterized  for
convenience by the reference abscissa x [0, 1] take
the values on the current deformed configuration.

The strain energy for the beam element is given

by:
y :g[Ausz(x)ﬂAu (x)x(x)
’ 0 +A22K ( )+‘//A3372(X)

Where: v =5/6

1 dx (10)

is a shear correction factor;

A, A, A, and A, are rigidities, defined as:

(Ass Ay, Ag) =DY. j EW (2

klhkl

A, :bi ]5 GY(z)dz

k=lh,_,

1zz)dz

(11)

The strain energy stored in the two-parameter
elastic foundation resulting from the deformation of a
beam element is given by:

TAP CHi ISSN: 1859-316X

KHOA HOC CONG NGHE HANG HAI

L_JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-

U =U, +Uq
KNI

2_(|J.u+w dx

' 12
2 0

where k, andk; are the stiffness of the Winkler
foundation and the shear layer, respectively.

The displacements and rotation inside the element
can be linearly interpolated from the nodal values
according to:

l—x X
! (13)

The above linear interpolation, however leads to
an element with the shear-locking problem [4]. In
order to deal with this problem, one-point Gauss
quadrature is employed herewith to evaluate the strain
energy of the element. In this regard, the strain energy
of the beam element in the following form:

U=U,+U,

_ %| (AZ? +2A,5% + A% +y ALT? ) (14)

+|§kW (u2+wz)+|5ke(§—;7)2

sm@ -1

Wo=Weosd  (5)

The internal nodal force vector f, and the
tangent stiffness matrix k, are computed by once and
twice differentiating the strain energy with respect to
the nodal displacement, respectively:

= o =f, +F +f +F +f' 4 (16)
od
2,
kinzzdg:kf‘+kf+k?+kf+k‘{v+kf 17)
where the superscrips a,c,b,s,WandG

respectively, indicate the terms contributed by the
axial stretching, axial-bending coupling, bending,
shear deformation of the beam, stretch of the Winkler
foundation, and the rotation of the shear layer.
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4. Equilibrium equation

The equilibrium equation for large deflection
analysis of the beam can be written in the form [4]:

9(p.2) =0, (p)-4f,, =0

where the residual force vector ¢ isafunction of
the current structural nodal displacements p, and the
load level parameter A; g, is the structural nodal
force vector, assembled from the formulated vector
f _:f_ isthe fixed external loading vector.

in ex

Eqg. (18) can be solved by an incremental/iterative
procedure. A convergence criterion based on
Euclidean norm of the residual force vector is used for
the iterative procedure as:

(18)

lgl< gl Af, | (19)

where S s the tolerance, chosen by 10 for
all numerical examples considered in Section 5.

In order to handle the special cases where the
tangent stiffness matrix ceases to be positive define,
Newton-Raphson based iterative method is used
herein in combination with spherical arc-length
control technique in solving Eq. (18).
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5. Numerical results

In this section, the following dimensionless
parameters are introduced for the external loads and
displacements:

«_El .U

P -1
B L

W =

. W
L (20)
where | is the inertia moment of the cross section;

u,, w,_ are the tip axial and vertical displacements,
respectively.

As mentioned in the Introduction section, there are
no available literatures related to large displacement
analysis of FG-CNTRC sandwich beam, a
homogenous beam subjected to a tip load P is
analyzed herein to verify the formulation. The
normalized tip displacements of the beam obtained
herein compared to the available solution of
Mattiasson [8] and Nanakorn and Vu [9] are given in
Table 1. The good agreement between the
displacements of the present work with that of Ref. [8]
and Ref. [9] is seen from Table 1, regardless of the
applied load.

Table 1. Comparison of tip response of homogenous beam under a tip load

p* lu* w*

Ref. [8] Ref. [9] Present Ref. [8] Ref. [9] Present
3 0.25442 0.24757 0.25458 0.60325 0.59534 0.60434
5 0.38763 0.37733 0.38783 0.71379 0.70479 0.71541
7 0.47293 0.46103 0.47317 0.76737 0.75831 0.76950
9 0.53182 0.51909 0.53209 0.79906 0.79011 0.80169

Table 2. Tip response of FG-CNTRC sandwich beam under a tip load P*=15, L/h=20, «=0.4

h./h, =4 h/h, =6 h./h, =8
(kite) — Type Vin Voa Voa
0.12 0.17 0.28 0.12 0.17 0.28 0.12 0.17 0.28
ubD 0.9100 0.8967 0.8745 0.9085 0.8976 0.8789 0.9076 0.8983 0.8822
FG-X 0.9098 0.8964 0.8742 0.9084 0.8975 0.8787 0.9075 0.8983 0.8821
(50,05) FG-O 0.9102 0.8969 0.8969 0.9086 0.8977 0.8790 0.9076 0.8984 0.8823
FG-V 0.9063 0.8920 0.8681 0.9063 0.8947 0.8749 0.9061 0.8964 0.8795
FG-A 0.8795 0.9016 0.8812 0.9107 0.9005 0.8829 0.909 0.9003 0.8849
ubD 0.8765 0.8636 0.8426 0.8751 0.8646 0.8468 0.8743 0.8654 0.8500
FG-X 0.8763 0.8634 0.8423 0.8751 0.8645 0.8467 0.8742 0.8653 0.8499
(100,2.5) FG-O 0.8767 0.8639 0.8429 0.8752 0.8647 0.8469 0.8743 0.8654 0.8501
FG-V 0.8729 0.8591 0.8365 0.8730 0.8619 0.8430 0.8729 0.8635 0.8474
FG-A 0.8803 0.8684 0.8489 0.8773 0.8674 0.8507 0.8757 0.8672 0.8526
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Figure 3. Load-displacement curves of FG-CNTRC sandwich beam under tip load

Table 2 presents tip response of FG-CNTRC
sandwich beam under a tip load P*=15 for five
types of CNT distribution. The non-dimensional

parameters (k;, k, ) =(50,0.5) and (k;, k, ) =(100,2.5)

are computed respectively in this table. As can be seen
that the tip response of the beam decreases with

increasing of the total CNTs volume fraction VgNT :

Among the five type of CNT distribution, the FG-V
leads to the smallest result, opposite to the FG- A ,
which gives the highest tip response, while the results
obtained from three types UD, FG-X, FG-O are very
close together. Table 2 also shows the effect of the ratio

h, /h, on the tip response of the beam. The increase

of the ratio h /h, leads to the decrease in tip

response of the beam. These results are resulted from
the increase in the stiffness of the sandwich beam.

Figure 3 plots the load-displacement curves of FG-
CNTRC sandwich beam under the tip load for
difference values of foundation parameter or . At the
given value of normalizied load, the tip displacements
increase with the increasing of « .

6. Conclusions

The paper has investigated the large deflections of
FG-CNTRC sandwich beam partially resting on two-
parameter elastic foundation with five different types
of CNT distribution for the first time. The obtained
numerical results show that the CNT volume fraction,
the type of CNT distributions and the foundation
support play a vital role in the large deflection
behavior of the sandwich beams. The formulation
derived in the present work can be extended to count
for the influence of other factors such as the
temperature and porosities as well.
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